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TECHNICAL m o m m  x-502 

THE EFFECTS OF BOUNIIARY-UXER REMOVAL THROUGH 
THROAT SLOTS ON THE INTEFUTAL PERFORMANCE 

OF A SIDE INLFT AT MACH W E R S  
OF 2.0 AND 2.3* 

By John J, Gawienowski 

A wind-tunnel invest igat ion w a s  conducted t o  determine t h e  e f f e c t s  
of varying t h e  boundary-layer-control th roa t  bleed s l o t  width and mass- 
flow r a t e  on t h e  i n t e r n a l  performance of a double-ramp external  compression 
s ide  i n l e t  with a rap id  turn.  The t e s t s  were conducted a t  Mach numbers 
2.0 and 2.3, and a t  Reynolds numbers from 2.2 t o  2.4X106 per foot .  

Increasing t h e  bleed s l o t  area f rom 13 t o  52 percent of the  i n l e t  
area while maintaining an approximately constant bleed mass-flow r a t e  
r e s u l t e d  i n  a decrease i n  i n l e t  m a x i m  pressure recovery with a concomi- 
tant increase i n  d i s t o r t i o n ,  Increasing the  bleed mass-flow r a t e  while 
maintaining a constant boundary-layer-control bleed s l o t  s i z e  resu l ted  in 
an increase i n  i n l e t  maximum pressure recovery and a decrease i n  d is -  
t o r t i o n ,  Comparison of t h e  performance of t h e  i n l e t  with t h e  d i f fe ren t  
bleed slot s izes  at  t h e i r  best  bleed flow r a t e s  showed only mi~or vari- 
a t ions  i n  pressure recovery and dis tor t ion;  but s ign i f icant  changes 
occurred i n  c r i t i c a l  mass-flow r a t i o  as a r e s u l t  of t h e  higher bleed 
flow rates through t h e  la rger  s l o t s ,  
formance losses  a t  a Mach number of 2.3 than at 2.0 because of var ia t ions  
i n  both t h e  bleed mass-flow r a t i o  and s lo t  width, 

The i n l e t  experienced l a r g e r  per- 

INTRODUCTION 

Because of t h e  i n t e r e s t  i n  t h e  f i e l d  of boundary-layer control  f o r  
a i r - induct ion systems, an invest igat ion was  conducted t o  determine t h e  
effect  of varying a t h r o a t  bleed s l o t  s ize  and mass-flow r a t i o  of a 
boundary-layer-control system f o r  an external compression i n l e t  which 
incorporates  rapid turning of the  in te rna l  flow, 
a more r a p i d  t u r n  a t  t h e  t h r o a t  of an external compression i n l e t  w a s  

The advantage of using 

* T i t l e ,  Unclassified 
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demonstrated i n  reference 1. 
i n  t h e  cowl drag of a symmetrical i n l e t  could be r ea l i zed  with only a 
small penalty i n  pressure recovery. 
shown tha t  t h e  use of boundary-layer bleed a t  t h e  i n l e t  t h roa t  i n  con- 
junction with t h e  rapid turning of t h e  i n t e r n a l  flow resu l ted  i n  a large 
improvement i n  pressure recovery. 
revealed t h a t  there  were in su f f i c i en t  data  t o  design a boundary-layer 
bleed throat  s l o t  for i n l e t s  of unl ike geometry. 
from the survey t h a t  t he re  i s  no standard parameter f o r  specifying the  
s l o t  width or area. 
percent of t h e  i n l e t  areas with bleed flow rates varying from 3 t o  7 
percent of t h e  i n l e t  mass-flow r a t i o  ( r e f s .  2 t o  9).  
determine the  bes t  boundary-layer-bleed s l o t  width and mass-flow r a t e  f o r  
an external  compression i n l e t  which incorporates rap id  turning of t h e  
in t e rna l  flow, it w a s  necessary t o  conduct an experimental invest igat ion.  
The boundary-layer-control s l o t  w a s  t e s t e d  i n  th ree  widths which corre- 
sponded t o  areas  of 13, 26, and 52 percent of t h e  i n l e t  area, and t h e  
bleed mass-flow r a t e  was var ied  f rom 1.0 t o  11.5 percent of t h e  i n l e t  
mass-flow r a t i o .  
t h e  i n l e t  i n t e r n a l  performance, namely pressure recovery, d i s to r t ion ,  
and compressor-f ace pressure d i s t r ibu t ion ,  were invest igated and the  
r e su l t s  have been presented herein. 
t h i s  investigation. 

It was shown t h a t  a s ign i f i can t  reduction 

Furthermore, i n  reference 2 it was 

A survey of ava i lab le  l i t e r a t u r e  

Also, it was noted 

The s l o t  areas  were found t o  vary from 8 t o  74 

Therefore, t o  

The e f f ec t s  of s l o t  width and bleed mass-flow r a t e  on 

N o  drag measurements were made during 

The present inves t iga t ion  was  performed i n  t h e  9- by 7-foot t e s t  
sect ion of t h e  Ames Unitary Plan Wind Tunnel a t  Mach numbers of 2.0 and 
2.3 and an i n l e t  t o  free-stream angle of a t t ack  of +lo. 
of the  t e s t  var ied  from 2.2 t o  2.4 mi l l ion  per  foot .  

Reynolds number 

SYMBOLS 

a i  i n l e t  area perpendicular t o  secand ramp at  cowl l i p ,  
7.10 sq in .  

“S a rea  of t h roa t  s l o t ,  sq i n .  

F1,2,3 bleed flow cont ro l  valve pos i t ions  ( c o n t r o l  valve opening 
areas equal t o  0.13, 0.26, and 0.32 ai, respec t ive ly)  

m2 - 
mco 

main duct mass-flow r a t i o  

m3 
m00 

bleed duct mass-f low r a t i o  

M Mach number 
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- t o t  a l -pres  sure  recovery 
pt03 

b.1.c. b oundary-layer cont ro l  

Subscripts 
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max 

A 
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4 
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min 

t 

I 03 

I 2 

I ‘ 3  

average 

m a x i m  

m i n i m  

t o t a l  

f r e e  stream 

compressor s ta t ion ,  model s t a t ion  40-50 

bleed duct rake s t a t i o n  

A P P W S  AND PROCEDURE 
b 

b 

Schematic drawings are presented i n  f igu res  l (a) ,  ( b ) ,  and ( c )  of 
t h e  over -a l l  model which’ consisted of a f’uselage forebody with ex terna l  
ComyreSsiDE side i r r12tS .  

3 

The s ide  i n l e t  consisted of two external  compression ramps of near 
optimum design, 10’ and 24O, f o r  a design Mach number of 2.3. 
or 24 
gap a t  t h e  leading edge and a perforated surface as  shown i n  d e t a i l  C 
of figure 1. 
t h e  boundary layer  through a duct t o  an e x i t  vent behind t h e  model canopy. 
The s l o t  widths of 0.13, 0.26, and 0.52 inch were equal t o  13, 26, and 
52 percent  of t h e  i n l e t  area,  respectively.  
t h r o a t  slot w a s  regulated by a f l a p  valve as  shown i n  f igu re  1( c )  - 
t h e  second ramp bleed and t h e  throa t  s lo t  bleed were exhausted through 
a common duct. 

The second, 
0 ramp, provided f o r  boundary-layer removal by  means of a 0.02-inch 

A t  t h e  i n l e t  t h r o a t  a transverse s l o t  was  used t o  bleed off 

The a i r  flow through t h e  
Both 

The a rea  expansion of t h e  i n l e t  subsonic d i f f u s e r  behind t h e  boundary- 
layer -cont ro l  s l o t  w a s  equivalent t o  t h a t  of a l3O included angle cone 
as shown i n  f i g u r e  2- The d i f fuse r  had a s l i g h t  area contract ion irnmedi- 
a t e l y  upstream of t h e  compressor f ace  s t a t ion  due t o  t h e  presence of t h e  
simulated compressor hub 
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Total-pressure recovery was  determined from an area-weighted average 
of 30 total -pressure tubes a t  fuselage s t a t i o n  40.50 as shown i n  d e t a i l  
A of f igure 1. 
controlled plug a t  t h e  duct e x i t  ( f i g s .  1( a) and ( b ) )  , was computed from 
t h e  average Mach number determined from t o t a l -  and s ta t ic -pressure  
measurements at s t a t i o n  40.50. 

The mass-flow r a t i o ,  which w a s  regulated by a remotely 

The mass-flow r a t i o  through t h e  boundary-layer bleed duct w a s  
determined from area-weighted average total-pressure recovery and average 
Mach number which were measured by t h e  s t a t i c -  and total-pressure tubes 
shown i n  d e t a i l  B of f igure  1, 
used t o  control  t h e  flow r a t e s  through t h e  boundary-layer-bleed s l o t .  
These posit ions which a re  noted as F1, F,, and F3 
opening areas  equal t o  13, 26, and 52 percent of t h e  i n l e t  area, 
r e  spect ive l y  - 

d 

Three posi t ions of t h e  f l a p  valve were 

represent f l a p  valve 

- 
The model w a s  t e s t e d  with the  center  l i n e  of t h e  s ide i n l e t  

( f i g .  l ( b ) )  at +lo angle of a t tack  r e l a t i v e  t o  t h e  tunnel  airstream. 

Distortions which were determined from l o c a l  t o t a l  pressures 
measured at t h e  compressor face rake a r e  defined as 

A strain-gage pressure pickup c e l l  w a s  i n s t a l l e d  on t h e  inboard w a l l  
of the  duct at fuselage s t a t i o n  27.42. 
a t ions  from t h i s  c e l l  were used t o  determine t h e  minimum s t a b l e  mass- 
flow ra t io .  Duct-flow buzz w a s  observed on t h e  schl ieren screen when 
pressure f luc tua t ions  exceeded 0.05 p . 

Indicat ions of pressure f l u c t u -  

t a Y  

All pressure r a t i o s ,  which a r e  presented f o r  t h e  p o r t  duct only, 
were determined within an accuracy of i-0.005. 

RESULTS AND DISCUSSION 

The design of a boundary-layer-bleed t h r o a t  s l o t  can have pronounced 
effects on the  i n t e r n a l  performance of an ex terna l  compression i n l e t -  
I n  t h i s  t e s t  a comparison has been made of t h e  e f f e c t s  on i n l e t  performance 
of varying t h e  s i z e  of the  boundary-layer-bleed s l o t  and t h e  mass-flow 
r a t e  through t h e  s l o t .  
a t ion  of t h i s  i n l e t  a re  believed t o  have negl ig ib le  inf luence on t h e  
in te rna l  performance- The ef fec t iveness  of t h e  boundary-layer-bleed 
systems i s  compared for two free-stream Mach numbers, 2.3 and 2.0. 

* 

The la rge  s p i l l a g e s  due t o  t h e  off  design oper- 4 



b 

b 

A 
3 
4 
5 
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To approximate a constant boundary-layer-bleed mass-flow rate while 
t h e  t h r o a t  s l o t  s i z e  w a s  varied,  t h e  bleed mass-flow control  valve w a s  
maintained a t  a constant opening. 
condition have been presented i n  f igure  3. 

The r e s u l t s  of t e s t i n g  under t h i s  

Increasing t h e  width of t h e  boundary-layer-bleed s l o t  adversely 
a f fec ted  the  maximum pressure recovery, c r i t i c a l  mass-flow r a t i o ,  and 
d i s t o r t i o n  a t  M, = 2.3 as noted i n  f igure 3( a) .  

Although t h e  increase i n  s l o t  width resu l ted  i n  l a r g e r  bleed mass- 
flow r a t e s ,  t h e  maximum pressure recovery decreased by 0.035.1 

The reduction i n  c r i t i c a l  mass-flow r a t i o  t h a t  accompanied t h e  
increase i n  bleed s l o t  width would be detrimental, since f o r  a given 
engine air-flow requirement, it would require  a l a r g e r  capture area and 
consequently would increase the external  drag. 

These adverse e f f e c t s  of increased bleed s l o t  width on i n l e t  
performance a r e  more pronounced at M, = 2.3 than  a t  M,= 2.0, as seen 
i n  f i g u r e s  3( a) and ( b )  . 

Figures 3 ( c )  and ( a )  present t h e  e f f e c t s  of increasing s l o t  width 
on i n l e t  performance when a la rger  bleed control  valve opening area,  
F2, w a s  used. It w i l l  be noted t h a t  the r e s u l t s  i n  f i g u r e  3 ( c )  do not 
follow t h e  t rend  of f igures  3(a) ,  ( b ) ,  and (a ) ;  namely, when t h e  s l o t  
width i s  increased, t h e  maximum pressure recovery i s  decreased, This 
decrease i s  believed t o  r e s u l t  from choking of t h e  as/ai = 0.26 slot 
f o r  a l l  cont ro l  valve se t t ings  greater  than F1. This choked condition 
Is z-v-ideiit - w h e n  -the bieed mass-flow r a t i o s  f o r  t h e  as/ai = 0.26 slot 
are  com-pared i n  f igures  3( a) and ( c )  . 
opening area from F1 t o  F, did  not s ign i f icant ly  change t h e  bleed mass- 
flow r a t i o  or t h e  pressure recovery. 

Increasing the  control  valve 

‘Although it might be thought that  t h e  decrease i n  m a x i m u m  pressure 
recovery could have been caused by reversed flow through t h e  second ramp 
porous a r e a  from t h e  common e x i t  bleed duct, it i s  unl ikely t h a t  t h i s  
occurred since t h e  t h e o r e t i c a l  s t a t i c  pressure on t h e  second ramp w a s  
always g r e a t e r  than t h e  s t a t i c  pressure at t h e  bleed duct rake by a 
f a c t o r  of two or more. 
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Varyin@ BleEd M~las s +ow R a t  e s - 
Throat Slot  Size Constant 

The e f fec t  on i n l e t  performance of varying the  bleed mass-flow r a t e  
while maintaining a constant th roa t  s l o t  s ize  i s  presented i n  f i g u r e  4. 
I n  general, an increase i n  bleed flow r a t e  f o r  a constant th roa t  s l o t  
s i z e  resul ted i n  an increase i n  i n l e t  maximum pressure recovery and an 
accompanying decrease i n  d i s t o r t i o n ,  This e f f e c t  w a s  most pronounced 
f o r  the i n l e t  with the  
f igure 4( a ) .  
d i s tor t ion  decreased approximately by 0.03 with approximately a 54-percent 
increase i n  bleed mass-flow r a t i o .  A f u r t h e r  increase i n  cont ro l  valve 
opening area t o  100 percent of 
did not increase t h e  bleed mass-flow r a t e  or a f f e c t  t h e  i n l e t  performance. 

a 

as/ai = 0.52 s l o t  a t  M<, = 2.3, as shown i n  4 

Here the  maximum pressure recovery increased by 0.03 while 

a i ,  data  for which have not been presented, 

The e f f e c t s  on i n l e t  performance of varying bleed mass-flow r a t e s  
are  also presented f o r  the  as/"? = 0.26 s l o t  i n  f i g u r e s  4(c)  and ( d ) .  
The bleed flow r a t e s  of f igure  4 ( c )  do not vary with a change i n  bleed 
control valve area because of t h e  choked throa t  s l o t  condition previously 
described. As i n  the  case of varying t h e  throa t  s l o t  s ize ,  t h e  e f f e c t s  
of varying bleed mass-flow r a t e s  on i n l e t  performance were more pronounced 
a t  M, = 2.3 than a t  M,= 2.0. 

Boundary-Layer Bleed Slot  Size 
A t  Optimum Bleed Mass Flow 

The r e s u l t s  presented so far have shown t h a t  t h e  e f f e c t s  of varying 
throat  s l o t  s ize  and bleed flow r a t e s  on i n l e t  performance a r e  d i f fe ren t .  

' While a reduction i n  s l o t  s i z e  improved t h e  i n l e t  pressure recovery and 
lessened d is tor t ion ,  so  d id  an increase i n  bleed flow r a t e .  Therefore, 
it i s  necessary t o  compare t h e  performance of t h e  i n l e t s  with t h e  
d i f fe ren t  s l o t  s izes  a t  t h e  bes t  obtainable bleed flow r a t e s  as presented 
i n  figure 5 .  
recovery and d i s t o r t i o n  but s i g n i f i c a n t  changes occurred i n  c r i t i c a l  
mass-flow r a t i o  because of the  higher bleed flow r a t e s  of t h e  l a r g e r  s ized 
s l o t s .  as/"? = 0.13 s l o t  had a 0.065 higher c r i t i c a l  
mass-flow r a t i o  than the  i n l e t  with t h e  as/ai = 0.52 s l o t .  This v a r i -  
a t ion  was approximately equal t o  t h e  difference i n  bleed mass-flow r a t i o s  
when two points of equal pressure recovery a r e  compared, A t  Ma= 2.3, 
t h e  i n l e t  with t h e  
recovery and higher d i s t o r t i o n  values  than t h e  i n l e t  with e i t h e r  of t h e  
other s l o t s  , 

L 

I n  general, t h e r e  were minor v a r i a t i o n s  i n  i n l e t  pressure 

The i n l e t  with t h e  

as/ai = 0.26 s l o t  had a lower m a x i m u m  pressure 

4 

To determine the  advantage d i r e c t l y  a t t r i b u t a b l e  t o  t h e  boundary- 
layer-bleed s l o t ,  the  i n l e t  w a s  t e s t e d  with t h e  s l o t  f a i r e d  over and t h e  
porous second ramp with leading-edge s l o t  operating as t h e  sole  means of 



I A  

I 5  

7 

boundary-layer control .  
t h roa t  s l o t  increased m a x i m u m  pressure recovery by 0.025 with an increase 
i n  bleed mass-flow r a t i o  of 0.02 t o  0.09 and a concomitant decrease i n  
d is tor t ion .  

A s  seen i n  f igure  5(a), t h e  addi t ion of t h e  

The va r i a t ions  i n  s l o t  s i z e  had only a minor influence on t h e  
compressor face  pressure d is t r ibu t ions ,  as shown i n  figure 6 a t  
and 2.0. The pressure d i s t r ibu t ions  have been presented f o r  t h ree  
representat ive mass-flow regions which a re  (1) c r i t i c a l  mass-flow r a t i o ,  
(2)  a normal operating condition of approximately 0.97 c r i t i c a l  mass- 
flow ra t io ,  and (3 )  t h e  minimum stable  mass-flow r a t i o  condition. 

M, = 2.3 

Assuming t h a t  with t h e  13 and 52 percent of a i  s l o t s  t h e  d i f fuse r  
losses  were equal, t h e  advantages tha t  can be gained by using t h e  smaller 
s l o t  s i z e  include (1) a smaller bleed mass-flow rate r e su l t i ng  i n  a 
reduction i n  t h e  volume and weight of t h e  bleed flow conduit s t ruc ture ,  
and ( 2 )  a higher c r i t i c a l  mass-flow r a t i o  r e su l t i ng  i n  a smaller capture 
a rea  and consequently a decrease i n  external  drag f o r  inlet-engine 
matching conditions.  

CONCUTDING REMARKS 

An inves t iga t ion  was conducted t o  determine t h e  e f f e c t s  on i n t e r n a l  
performance of varying t h e  width of and mass-flow r a t e  through t h e  
boundary-layer-control bleed s l o t  located a t  t h e  t h r o a t  of a n  ex terna l  
compression i n l e t  immediately ahead of a rapid turn .  Test r e s u l t s  showed 
t h a t  an increase i n  throa t  s l o t  area required an increase i n  bleed flow 
r a t e  t o  maintain m a x i m u m  pressure recovery and low d i s to r t ion  values f o r  
t h e  i n l e t .  

U 

The performance of the  i n l e t  w i t h  t h e  bo’Lmdary-layer-control t h r o a t  
s l o t  area equal t o  13 percent of t h e  i n l e t  area i s  comparable i n  pressure 
recovery and d i s t o r t i o n  t o  t h a t  of the i n l e t  with a s l o t  area four  t i m e s  
as l a rge  with t h e  added advantages of (1) a smaller bleed mass-flow r a t e  
which would r e s u l t  i n  a reduction i n  bleed ducting volume and weight, and 
(2)  a higher c r i t i c a l  mass-flow r a t i o  which would permit a reduction i n  
capture area and consequently external  drag for inlet -engine matching 
conditions.  

Ames Research Center e 
National  Aeronautics and Space Administration 

Moffett Field,  Calif.,  Jan. 6, 1961 
I -  
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Figure 3.- Effect  of i n l e t  t h r o a t  s l o t  s ize ;  p o s i t i o n  of bleed control  
valve constant.  
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Figure 3.- Continued. 
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Figure 3.- Continued. 
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Figure 3.- Concluded. 
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Figure 4.- Continued. 
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Figure 6.- Compressor face pressure 
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Figure 6 .- Concluded. 

@ 
0.13 inch b.1.c. s l o t  

m2/mrn = 0.48 
Pt2/Pt, = 0 . 9  

0.12 inch b.1.c. s l o t  

Minimum s t a b l e  mass - f l o w  

23 

NASA - Langley Field, Va. A-345 



3R 
s 0 . .  

___1 
e.. 
0 .  e. 5.  p.. 

2 9  

Y Y 

G a l  d h  
a@. "3 m 
0 -  m c w w  W o a ,  
0 

4 6  

. .  . 
2: 
m e  a m  
E 

\\ \ \ \  \ \\ h \\ h 

M 

b 
4 p i :  x a  

A 
3 
4 
5 

0 0  0 0 0  c 00 0 00 0 

9 9  9 
m m  v 

9 9  9 
m m  m 

m m  m 
40: 0: 

m m  m 
?? 9' 

m m  m 

N N  N 
. .  . 

-, c1 

m m  
+4+4 

0 o r l  0 M 
i i l d i l k  
o o a o  

P 
0 0  Y 

N N  N ruN N 


